TRECVID-2015 Semantic Indexing task: Overview

Georges Quénot Laboratoire d'Informatique de Grenoble

George Awad
Dakota Consulting - NIST

Outline

- Task summary (Goals, Data, Run types, Concepts, Metrics)
- Evaluation details
 - Inferred average precision
 - Participants
- Evaluation results
 - Hits per concept
 - •Results per run
 - Results per concept
 - Significance tests
- Progress task results
- Global Observations

Semantic Indexing task

- Goal: Automatic assignment of semantic tags to video segments (shots)
- •Secondary goals:
 - •Encourage generic (scalable) methods for detector development.
 - •Semantic annotation is important for filtering, categorization, searching and browsing.
- •Task: Find shots that contain a certain concept, rank them according to confidence measure, submit the top 2000.
- Participants submitted one type of runs:
 - Main run Includes results for 60 concepts, from which NIST evaluated 30.

Semantic Indexing task (data)

SIN testing dataset

 Main test set (IACC.2.C): 200 hours, with durations between 10 seconds and 6 minutes.

SIN development dataset

• (IACC.1.A, IACC.1.B, IACC.1.C & IACC.1.tv10.training): 800 hours, used from 2010 – 2012 with durations between 10 seconds to just longer than 3.5 minutes.

•Total shots:

Development: 549,434

•Test: IACC.2.C (113,046 shots)

• Common annotation for 346 concepts coordinated by LIG/LIF/Quaero from 2007-2013 made available.

Semantic Indexing task (Concepts)

- Selection of the 60 target concepts Were drawn from 500 concepts chosen from the TRECVID "high level features" from 2005 to 2010 to favor cross-collection experiments Plus a selection of LSCOM concepts.
- Generic-Specific relations among concepts for promoting research on methods for indexing many concepts and using ontology relations between them.
- we cover a number of potential subtasks, e.g. "persons" or "actions" (not really formalized).
- These concepts are expected to be useful for the content-based (instance) search task.
- •Set of relations provided:
 - •427 "implies" relations, e.g. "Actor implies Person"
 - •559 "excludes" relations, e.g. "Daytime_Outdoor excludes Nighttime"

Semantic Indexing task (training types)

- •Six training types were allowed:
 - •A used only IACC training data (30 runs)
 - •B used only non-IACC training data (0 runs)
 - •C used both IACC and non-IACC TRECVID (S&V and/or Broadcast news) training data (2 runs)
 - •D used both IACC and non-IACC non-TRECVID training data(54 runs)
 - •E used only training data collected automatically using only the concepts' name and definition (0 runs)
 - •F used only training data collected automatically using a query built manually from the concepts' name and definition (0 runs)

30 Single concepts evaluated(1)

```
3 Airplane*
                                   72 Kitchen
5 Anchorperson
9 Basketball*
                                   80 Motorcycle*
                                   85 Office
13 Bicycling*
                                   86 Old_people
15 Boat_Ship*
                                   95 Press_conference
17 Bridges*
                                   100 Running*
19 Bus*
                                   117 Telephones*
22 Car_Racing
                                   120 Throwing
27 Cheering*
                                   261 Flags*
31 Computers*
38 Dancing
                                   321 Lakes
41 Demonstration_Or_Protest
                                   392 Quadruped*
49 Explosion_fire
                                   440 Soldiers
56 Government leaders
                                   454 Studio With Anchorperson
                                   478 Traffic
71 Instrumental Musician*
```

-The 14 marked with "*" are a subset of those tested in 2014

Evaluation

- •The 30 evaluated single concepts were chosen after examining TRECVid 2013 60 evaluated concept scores across all runs and choosing the top 45 concepts with maximum score variation.
- Each feature assumed to be binary: absent or present for each master reference shot
- NIST sampled ranked pools and judged top results from all submissions
- Metrics: inferred average precision per concept
- •Compared runs in terms of **mean** inferred average precision across the 30 concept results for main runs.

2015: mean extended Inferred average precision (xinfAP)

- 2 pools were created for each concept and sampled as:
 - •Top pool (ranks 1-200) sampled at 100%
 - Bottom pool (ranks 201-2000) sampled at 11.1%

30 concepts
195,500 total judgments
11,636 total hits
7489 Hits at ranks (1-100)
2970 Hits at ranks (101-200)
1177 Hits at ranks (201-2000)

- •Judgment process: one assessor per concept, watched complete shot while listening to the audio.
- infAP was calculated using the judged and unjudged pool by sample_eval

2015: 15 Finishers

PicSOM Aalto U., U. of Helsinki

ITI CERTH Information Technologies Institute, Centre for Research and

Technology Hellas

CMU Carnegie Mellon U.; CMU-Affiliates

Insightdcu Dublin City Un.; U. Polytechnica Barcelona

EURECOM EURECOM

FIU UM Florida International U., U. of Miami

IRIM CEA-LIST, ETIS, EURECOM, INRIA-TEXMEX, LABRI, LIF, LIG, LIMSI-

TLP, LIP6, LIRIS, LISTIC

Laboratoire d'Informatique de Grenoble

NII Hitachi UIT Natl.Inst. Of Info.; Hitachi Ltd; U. of Inf. Tech. (HCM-UIT)

TokyoTech Tokyo Institute of Technology

MediaMill U. of Amsterdam Qualcomm

siegen kobe nict U. of Siegen; Kobe U.; Natl. Inst. of Info. and Comm. Tech.

UCF CRCV U. of Central Florida

UEC U. of Electro-Communications

Waseda U.

Inferred frequency of hits varies by concept

Total true shots contributed uniquely by team

Team	No. of Shots	Team	No. of shots
Insightdcu	27	Mediamill	8
NII	19	NHKSTRL	7
UEC	17	ITI_CERTH	6
siegen_kobe_nict	13	HFUT	4
EURECOM	10	CMU	3
FIU	10	LIG	2
UCF	10	IRIM	1

Fewer unique shots compared to TV2014, TV2013 & TV2012

Type D runs (both IACC and non-IACC non-TRECVID)
 Type A runs (only IACC for training)
 Type C runs (both IACC and non-IACC TRECVID)

Main runs scores – Including progress

^{*} Submitted runs in 2014 against 2015 testing data (Progress runs)

Statistical significant differences among top 10 Main runs (using randomization test, p < 0.05)

		➤D_MediaMill.15_4	➤D_MediaMill.15_1	
		D_MediaMill.15_3	D_MediaMill.15_3	
		➤D_TokyoTech.15_1	> D_Waseda.15_1	
_		➤D_TokyoTech.15_2	> D_Waseda.15_3	
•Run name	(mean infAP)	> D_Waseda.15_1	D_Waseda.15_4	
D_MediaMill.15_4	0.362	➤D_Waseda.15_3	D_Waseda.15_2	
D_MediaMill.15_2	0.359	> D_Waseda.15_4	D_TokyoTech.15_1	
D_MediaMill.15_1	0.359	> D_Waseda.15_2	➤D_TokyoTech.15_2	
D_MediaMill.15_3	0.349			
D_Waseda.15_1	0.309		➤D_MediaMill.15_2	
D_Waseda.15_4	0.307		➤D_MediaMill.15_3	
D_Waseda.15_3	0.307		> D_Waseda.15_1	
D_Waseda.15_2	0.307		> D_Waseda.15_3	
D_TokyoTech.15_	1 0.299		➤D_Waseda.15_4	
D_TokyoTech.15_	2 0.298		> D_Waseda.15_2	
-			➤D_TokyoTech.15_1	
			D_TokyoTech.15_2	

Progress subtask

- Measuring progress of 2013, 2014, & 2015 systems on IACC.2.C dataset.
- •2015 systems used same training data and annotations as in 2013 & 2014.
- •Total 6 teams submitted progress runs against IACC.2.C dataset.

Progress subtask: Comparing best runs in 2013, 2014 & 2015 by team

Randomization tests show that 2015 systems are better than 2013 & 2014 systems (except for UEC, 2014 is better)

Progress subtask: Concepts improved vs weaken by team,

2015 Observations

- 2015 main task was harder than 2014 main task that was itself harder than 2013 main task (different data and different set of target concepts)
- Raw system scores have higher Max and Median compared to TV2014 and TV2103, still relatively low but regularly improving
- Most common concepts with TV2015 have higher median scores.
- Most Progress systems improved significantly from 2014 to 2015 as this was also the case from 2013 to 2014.
- Stable participation (15 teams) between 2014 and 2015 (but was 26 teams for TV2013).

2015 Observations - methods

- Further moves toward deep learning
- More "deep-only" submissions
- Retraining of networks trained on ImageNet
- Use of many deep networks in parallel
- Data augmentation for training
- Use of multiple frames per shot for predicting
- Feeding of DCNNs with gradient and motion features
- Use of "deep features" (either final or hidden) with "classical" learning
- Hybrid DCNN-based/classical systems
- Engineered features still used as a complement (mostly Fisher Vectors, SuperVectors, improved BoW, and similar) but no new development
- Use of re-ranking or equivalent methods

SIN 2016?

- No SIN task is planned for 2016
- Resuming the ad hoc video retrieval task is considered instead